
111

Generation of Realistic Synthetic Financial Time-Series

MIHAI DOGARIU, LIVIU-DANIEL ŞTEFAN, and BOGDAN ANDREI BOTEANU, Politehnica
University of Bucharest, Romania
CLAUDIU LAMBA and BOMI KIM, Big Data & AI Lab, Hana Institute of Technology, Hana TI, South
Korea
BOGDAN IONESCU, Politehnica University of Bucharest, Romania

Financial markets have always been a point of interest for automated systems. Due to their complex nature,
financial algorithms and fintech frameworks require vast amounts of data to accurately respond to market
fluctuations. This data availability is tied to the daily market evolution so it is impossible to accelerate its
acquisition. In this paper, we discuss several solutions for augmenting financial datasets via synthesizing
realistic time-series with the help of generative models. This problem is complex since financial time series
present very specific properties, e.g., fat-tail distribution, cross-correlation between different stocks, specific
autocorrelation, cluster volatility etc. In particular, we propose solutions for capturing cross-correlations
between different stocks and for transitioning from fixed to variable length time-series without resorting to
sequence modeling networks, and adapt various network architectures, e.g., fully connected and convolutional
GANs, variational autoencoders, and generative moment matching networks. Finally, we tackle the problem
of evaluating the quality of synthetic financial time-series. We introduce qualitative and quantitative metrics,
along with a portfolio trend prediction framework which validates our generative models’ performance. We
carry out experiments on real-world financial data extracted from the US stock market proving the benefits of
these techniques.

CCS Concepts: • Mathematics of computing → Time series analysis; • Applied computing → Eco-
nomics; • Computing methodologies→ Adversarial learning; Unsupervised learning.

Additional Key Words and Phrases: time-series, synthetic financial data generation, financial data prediction,
generative models, fintech

ACM Reference Format:
Mihai Dogariu, Liviu-Daniel Ştefan, Bogdan Andrei Boteanu, Claudiu Lamba, Bomi Kim, and Bogdan Ionescu.
2018. Generation of Realistic Synthetic Financial Time-Series. ACM Trans. Multimedia Comput. Commun. Appl.
37, 4, Article 111 (August 2018), 30 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Financial markets are a field which, if acted upon correctly, can bring a major financial gain. This
has attracted attention both from individual traders and from researchers. The latter focused on
fitting mathematical models to the market’s behavior, trying to reach accurate automatic prediction
of financial events. Historically, researchers opted for one of two major directions: (i) statistical

This paper is the result of research funded by Hana TI.
Authors’ addresses: Mihai Dogariu, mihai.dogariu@upb.ro; Liviu-Daniel Ştefan; Bogdan Andrei Boteanu, Politehnica
University of Bucharest, Bucharest, Romania; Claudiu Lamba, lambac@hanafn.com; Bomi Kim, bomik@tepper.cmu.edu,
Big Data & AI Lab, Hana Institute of Technology, Hana TI, Seoul, South Korea; Bogdan Ionescu, bogdan.ionescu@upb.ro,
Politehnica University of Bucharest, Bucharest, Romania.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1551-6857/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Dogariu, et al.

models, e.g., ARCH with its variants [5, 16, 17, 24, 31, 47, 52, 65, 66, 75, 85], and (ii) agent-based
models [7–9, 51, 60, 81]. Despite all these efforts, it is still too complex to perfectly capture the
underlying properties of financial time series with such mathematical tools [78].

One possible solution to overcoming this drawback is to resort to state-of-the-art deep learning
methods [33]. This idea is also strongly backed by the current exponential progress that has
been done in other signal modeling domains such as speech recognition [3, 68, 88], speaker
recognition [67, 77], medical image classification [1, 23], action recognition [13, 35, 40] or image
enhancement [10, 21, 37]. This makes deep neural networks perfect candidates for tackling the
financial data modeling problem as well, since financial time-series are time-varying signals with
very specific properties. However, these come at the cost of needing significantly larger amounts
of data for training robust models than their hand-crafted feature-based learning counterparts.
In these domains, such as multimedia and vision, the content available for research is growing
at an exponential pace [49, 56]. Moreover, when there is a need for a very specific type of data,
researchers can create these resources by themselves by scraping the Internet and using crowd
sourcing annotation tools or even fully automatic annotations, e.g., for face and object detection [4]
or for concept detection [70].
In contrast, even though financial market indices are public and accessible to everybody, it

is a thorough and long-lasting gathering of this data that is missing. Quite often, if there are
such datasets available, they are kept behind a pay-wall, discouraging open-source research and
reproducibility. Complete and curated datasets can be bought from specialised providers, such
as Bloomberg L.P.1. This restriction forced researchers to resort to building their own lightweight
versions of the datasets. There are works that evaluated their research on the Google stocks [84],
Shanghai Composite Index, International Business Machine (IBM) Index, Microsoft Corporation
(MSFT) Index, Ping An Insurance Company of China (PAICC) Index [86], CSI 300 Index, Nifty 50
Index, Hang Seng Index, Nikkei 225 Index, DJIA Index [58] and S&P 500 Index [58, 86]. The most
common approach remains, however, to evaluate on the entire S&P 500 dataset2 [48, 78, 82]. The
financial markets depend, by their nature, on the daily evolution of worldwide events and there is
no available mechanism to accelerate the acquisition of such data. Thus, it is of great interest to be
able to synthesize new financial data which resembles real stock markets, on the spot, to train the
models.
Deep learning methods have achieved great success in realistic data generation and out of all

the proposed network models, Generative Adversarial Networks (GANs) [26] offered the most
spectacular results. This has been proven in several fields, GANs having the ability to generate
realistic faces [42, 71], perform image-to-image translation [36], generate scenes [2], raw audio
waveforms [15] or realistic text sequences [87]. Different approaches involving variational embed-
dings have also proved successful [18, 38, 63]. In this paper we tackle this issue and investigate
various solutions to generating realistic synthetic time-series as well as providing effective tools
for assessing their quality.
The applications related to financial time-series generation include, but are not limited to: 1)

portfolio management — portfolio managers (stockbrokers and hedge funds) extract meaningful data
related to the companies in which they should invest on short/medium/long term, e.g., daily values
prediction and trend pattern analysis. 2) metadata management — extracting valuable information
from a statistically relevant number of samples each day, e.g., understanding data seasonality and
predicting sales patterns for various companies; 3) forecasting models — all previously mentioned

1https://www.bloomberg.com/professional
2https://www.spglobal.com/ratings/en

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.bloomberg.com/professional
https://www.spglobal.com/ratings/en

Generation of Realistic Synthetic Financial Time-Series 111:3

applications boil down to building accurate forecasting models used for stock market prediction.
This is, in essence, the main goal of any financial application.

The remainder of the article is organized as follows. In Section 2 we discuss the existing ap-
proaches in the literature, Section 3 provides a description of the financial time series. The proposed
solutions are presented in Section 4, Section 5 discusses data processing, and the experimental
setup and results are presented in Section 6. Finally, Section 7 provides an in-depth discussion
about the entire set of results and discusses future work.

2 RELATEDWORKS
Recently, the financial field has also started focusing on the use of generative models for time series
generation. There are two main directions that researchers are following.
One approach is to focus on predicting the next sample(s) in a sequence based on the available

recent history. This can be modeled as a regression problem, trying to perform the prediction
𝑝 (𝑥𝑡+1, ..., 𝑥𝑡+𝑛 |𝑥1, ..., 𝑥𝑡), where 𝑥1, ..., 𝑥𝑡 are the historical values from moment 1 up to moment
𝑡 and 𝑥𝑡+1, ..., 𝑥𝑡+𝑛 are the future 𝑛 samples that are being predicted. Most of the time, 𝑛 = 1 is
considered to be enough, since we are interested in more accurate predictions in the immediate
future, rather than fuzzy predictions in the distant future. This is mainly due to the possibility of
unexpected events occurring which may strongly and quickly alter the market’s behavior making
it unnecessary to attempt predictions far into the future. Several works have been carried out
in this direction. For instance, Zhou et al. [89] propose a generic framework employing Long
Short-Term Memory (LSTM) and convolutional neural networks for adversarial training to forecast
high-frequency stock market. Wiese et al. [82] use temporal convolutional networks and manage
to capture longer-ranging dependencies such as the presence of volatility clusters. A more general
approach is TimeGAN [84], a framework that learns an embedding space jointly optimized with
both supervised and adversarial objectives. The authors test their method on four different types of
data: multivariate sinusoidal sequences, stock prices, appliances energy consumption prediction,
and events. Kim et al. [44] tackle financial time series prediction with stacked LSTM, attention
networks, and weighted attention networks.
Another approach is to generate a fixed number of consecutive samples at a time, in a dataset

augmentation paradigm. This procedure requires to extract windows of a given length 𝐿𝑤 when
creating the training dataset for the generative model. Koshiyama et al. [48] propose a cGAN model
for trading strategies calibration and aggregation. Choosing the correct cGAN model is, however,
very biased and does not rely on a particular scientific explanation. Similarly, Fu et al. [20] use
cGANs for financial time series generation. The conditions can be both categorical and continuous
variables containing different kinds of auxiliary information. Another example is the framework
in [78], where the authors propose several mixtures of multilayer perceptrons and convolutional
neural networks to generate fixed-length time series. However, the authors only evaluate their
approach from a qualitative point of view, leaving the results to subjective interpretation.
Synthesized samples are usually validated by a stock market prediction algorithm. There are

several papers in the literature covering this field, since it is the most straight-forward approach [19,
22, 43, 53, 76]. Another problem, where it is needed to predict which companies (out of a portfolio)
will be the best performing ones is known as stock market trend prediction and has also been
covered in the literature [29, 34, 57, 72, 80, 83]. It also represents the main application for our
financial time series generation problem.
In this paper, we propose a financial time-series generation framework. Data pre-processing

and post-processing play an important role in achieving the best results. Qualitative, quantitative
evaluation and prediction of stock market movement of our models validates our approach, as
our proposed system achieves better performance when the training dataset is augmented with

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 Dogariu, et al.

synthetically generated samples. Contrary to other existing works, we decided to focus more on
exploring the boundaries of this problem and therefore, investigated several solutions rather than
proposing a single one. Previous experiments show that different network architectures come each
with their own pros and cons, and finding a candidate that performs best in all situations, e.g.,
capturing all the statistical properties of the real time-series, may be an ill-posed task as one doesn’t
look for an identical replica of the initial data. Researchers will usually find solutions for different
usage situations of the data where variable independent properties of the data should be captured,
but very seldom they will focus on meeting all the properties at once.

The contributions of our work, beyond the state of the art are as follows: (i) we provide solutions
for data pre- and post- processing that allow increasing the performance of the models, (ii) we
extend the range of generative models and evaluation metrics for financial time-series addressed
by the current state of the art, (iii) we propose a solution for capturing cross-correlation between
different stocks during training, (iv) we propose a solution for transitioning from fixed to variable
length time-series without resorting to sequence modeling networks (e.g., LSTM, RNN, GRU etc.),
(v) we explore a great wealth of advanced generative architectures and provide several solutions for
different scenarios, (vi) we validate the proposed approach by performing stocks trend prediction
and prove that synthetic samples help improve prediction accuracy. This paper builds upon our
previous work [12] where fixed-length financial time-series were generated with GANs. The main
new features of this work consist of investigating more classes of generative models, proposing
several additional qualitative metrics, proposing a new batch feeding mechanism to capture cross-
correlation of the real stocks and implementing a complex trend prediction setup used to evaluate
the goodness of the synthetic samples, as well as providing extensive testing. We compare our
results with our previous work [12] and with the ones of Takahashi et al. [78] since the principle
they are following is the closest to our work.

Overall, this is an incipient domain which started to gain traction recently, which is visible from
the amount of publications and few algorithm resources available. Even though they are scarce, it
is worth mentioning that they are very recent, proving that this field receives growing attention. In
this context, we consider our work exploratory, providing a deeper understanding of the financial
time series generation problem.

3 FINANCIAL TIME-SERIES
Financial data represents information about the state and progress of a company’s financial assets.
A company’s financial time series represents the chronological evolution of several indicators. To
create good prediction models it is necessary to train on sufficiently large and diverse datasets. Such
a dataset must contain not only a great number of companies (in order to offer good generalization
perspectives), but also a large number of samples for each company, i.e., to span a long time period
(in order to capture as many different moments in trading history as possible). However, this
resource is not always freely available and, when it is, it does not provide enough data for more
complex models. It is therefore extremely helpful to have a system that can synthetically generate
training data for models to become more profitable.

In our work, we use the daily values of the closing price (C) — the price that the stock reached at
the end of the trading day. All entities involved in the trading of stocks use the closing price as a
reference point to monitor a company’s performance over one day. Moreover, the trend that the
closing price is following is more important than its magnitude since stock prices can have various
ranges between companies. We take as an example the evolution of Apple stocks from March 20th
to 21st 2019, when the closing price rose from $187.43 to $194.34, resulting in an absolute difference
of $6.91. Similarly, Amazon closing price increased from $1897.83 to $1904.28 from June 26th to
27th 2019, resulting in an absolute difference of $6.45. These two differences are comparable in

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:5

magnitude, but proportional to their corresponding closing prices, they are different by one order
of magnitude. Therefore, we focus on ratios of closing prices, rather than absolute closing prices. In
particular, we investigate log returns, i.e., the logarithm of ratios of closing prices from consecutive
days, given by:

𝑟𝑖 = ln
𝐶𝑖

𝐶𝑖−1
, (1)

where 𝐶𝑖 represents the closing price of day 𝑖 and 𝑟𝑖 the log return closing price of day 𝑖 . This
ratio is useful because it reduces not only the intra-variation of the time series, but also acts as a
normalization between different companies’ stocks, as displayed in Figure 1. We can see there that
two stocks that do not have the same behavior and whose magnitudes of the closing prices belong
to different ranges can be successfully encoded under the same range by applying the log return
transformation.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Time [years]

100

200

300

Cl
os

e
pr

ice
 [$

]

ADBE
AOS

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Time [years]

−0.3

−0.2

−0.1

0.0

0.1

0.2

Cl
os

e
lo

g
re

 u
rn

 p
ric

e

ADBE
AOS

Fig. 1. Log return influence on the intra and inter variations of the closing prices for two companies (A. O.
Smith Corp — AOS and Adobe Inc. — ADBE); top — closing prices evolution over 20 years, bottom — log return
of the same prices.

Financial time-series are different from other data in the sense that it is necessary to wait for an
entire day to extract one new sample (if the granularity is at day level), given that international
stock markets update closing prices at the end of the trading day. This strengthens the necessity to
have a good data generator for this type of data.

The microstructure of the financial market gives the financial time series several properties and
shapes [6, 11, 82]. It is known that these time series are more peaked than normal distribution and
exhibit a fat-tailed behavior, meaning that extreme values (both high and low) are more probable
than in normal distributions. Also, large changes of prices tend to cluster together, an effect called
volatility clustering and can be observed in Figure 1, where large/small changes are followed by
large/small changes, respectively. This volatility is negatively correlated with the return process

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 Dogariu, et al.

and is called leverage effect. Lastly, empirical asset returns are uncorrelated for any value of the
lag larger than one, but not independent. Generative models face the major challenge of having to
cover all these properties of the financial time-series.

4 GENERATIVE MODELS
The first step of our proposed solution consists of generating a fixed-length 1-dimensional array of
samples with the help of several generative models. Since there is no standardised architecture
agreed upon in the literature that would solve this problem, we performed an in-depth study over a
vast number of generative architectures. Our aimwas not to come upwith a novel model architecture
since this domain is still young and there has not been any work conducted to prove one model’s
superiority over the others. Instead, we adapted to our framework many architectures that have
been successfully applied in other multimedia domains (mostly image generation). We investigated
3 major classes of generative models: Generative Adversarial Networks [26] (GANs), Variational
Autoencoders (VAEs) [45, 73] and Generative Moment Matching Networks (GMMNs) [14, 54]. For
each such class we explore various architectures and training setups in search of the model that
manages to best capture the financial market’s characteristics. We explored the influence of the
number of neurons, layers, activations and types of layers by proposing several models that would
cover a range as diverse as possible and were surprised that choosing one model over the others
made an important difference. Moreover, as supported by our previous work [12] and the work of
Takahashi et al. [78], we concluded that small variations in the model architecture, such as batch
normalization, for example, make a crucial difference by turning an otherwise good working model
into an unusable generator. The target is to generate a fixed-length vector of log return Close prices.
In the following, we describe each of the architectures that were implemented. The length of the
synthesized 1D array has been set to 250 for all models, the equivalent of an entire working year in
finance. Please note that all architectures are presented in their optimized versions, achieved after
in-depth ablation studies.

4.1 Generative Adversarial Networks
GANs have been successfully used in other tasks such as image generation with outstanding results.
As pointed out in [25], if both the generator and the discriminator have enough capacity and at each
step of the training process the discriminator is allowed to reach its optimum given the generator,
then the generator model’s probability distribution will converge to that of the training data under
the classical GAN optimization function. As mentioned in Section 3, financial time-series follow
specific probability distributions, so it was our motivation to fit this exact distribution with the help
of GANs. We experimented two types of GANs: fully connected and fully convolutional. The fully
connected setup aims to take into consideration the effect that each value from the 250 samples
long 1D array has on the outcome. The fully convolutional approach is more oriented towards the
effect that short groups of consecutive values captured by the receptive field of the convolution
process (which also have the highest correlation since they refer to consecutive business days),
have on the outcome. Time series are essentially 1-dimensional arrays that hold a different value
for each time step. Therefore, our architectures have been redesigned for the 1D case.

4.1.1 Fully connected GANs - MLP. We implemented four vanilla MLP architectures with different
number of layers and neurons per layer, denoted𝑀𝐿𝑃1 to𝑀𝐿𝑃4. Each of the four models has several
distinct attributes, namely:

• 𝑀𝐿𝑃1: a 20−40−80−160−𝐿𝑤 generator network and a 𝐿𝑤−80−40−20−10−1 discriminator
structure.

• 𝑀𝐿𝑃2: is similar to𝑀𝐿𝑃1, but without dropout and batch normalization layers;

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:7

• 𝑀𝐿𝑃3: has the same layer organization structure as 𝑀𝐿𝑃2, but with different number of
neurons on each layer;

• 𝑀𝐿𝑃4: is a shallow version of𝑀𝐿𝑃3, with different number of neurons in the discriminator’s
layers.

4.1.2 Fully convolutional GANs - FCGAN. We implemented five architectures for fully convolutional
GANs, which were derived from the well known DCGAN [71]. All models follow a 100 − 96 −
48 − 24 − 12 − 1 − 𝑓 𝑐 (𝐿𝑤) structure in the generator and a 𝐿𝑤 − 1 − 12 − 24 − 48 − 96 − 1 − 𝑓 𝑐 (1)
structure in the discriminator, where each value represents the number of feature maps in the
respective layer and 𝐿𝑤 represents the length of the synthesized 1D array. The dimension of the
normal distributed random noise vector that was used as input for the generator is on the first
layer’s position, i.e., 100.
The five architectures are as follows:
• 𝐹𝐶𝐺𝐴𝑁1: the generator contains 5 layers of 1D transpose convolutions, each of which is
followed by a batch normalization layer and a ReLU activation, except for the last layer,
which does not connect to batch normalization. The discriminator has a mirrored structure,
with convolutional layers replacing the transpose convolutions;

• 𝐹𝐶𝐺𝐴𝑁2: is a shallower version of 𝐹𝐶𝐺𝐴𝑁1 that requires flattening layers to adapt to the
output dimension;

• 𝐹𝐶𝐺𝐴𝑁3: is the same as 𝐹𝐶𝐺𝐴𝑁1, but without any batch normalization.
• 𝐹𝐶𝐺𝐴𝑁4: is the same as 𝐹𝐶𝐺𝐴𝑁2, but without any batch normalization.
• 𝑠𝑛𝐹𝐶𝐺𝐴𝑁 : spectral normalization GAN. This is the same layer organization as in 𝐹𝐶𝐺𝐴𝑁1,
with the only difference that we replaced batch normalization layers with spectral normaliza-
tion layers [64].

4.1.3 Matching statistic moments. Motivated by the fact that we would like to generate samples
whose statistic moments match those of the real data, we adopted a weighted loss function between
the Maximum Mean Discrepancy (MMD) [27, 28] loss and the classical generator loss function
for both fully connected and fully convolutional GANs. Thus, the objective functions to optimize
alternatively during one training iteration become:

L𝐷 = log𝐷 (𝑥) + log(1 − 𝐷 (𝐺 (𝑧))) (2)
L𝐺 = (1 − 𝛼) log(1 − 𝐷 (𝐺 (𝑧))) + 𝛼L𝑀𝑀𝐷2 , (3)

where L𝐷 and L𝐺 are the discriminator and generator losses, respectively, 𝐷 (𝑥) and 𝐺 (𝑥) are the
discriminator and generator outputs, respectively, 𝑥 are real financial data, 𝑧 are the latent noise
vectors that are transformed by the generator into synthetic samples, 𝛼 is a weighting factor and
L𝑀𝑀𝐷2 is the Maximum Mean Discrepancy computed between the generated samples and the real
ones, expressed as:

L𝑀𝑀𝐷2 =
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑖′=1

𝑘 (𝑥𝑖 , 𝑥𝑖′) −
2
𝑁𝑀

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑘 (𝑥𝑖 , 𝑦 𝑗) +
1
𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑗 ′=1

𝑘 (𝑦 𝑗 , 𝑦 𝑗 ′), (4)

where 𝑥 and 𝑦 represent samples from two different sets 𝑋 = {𝑥𝑖 }𝑁𝑖=1 and 𝑌 = {𝑦 𝑗 }𝑀𝑗=1, with 𝑁 and
𝑀 being the sample set’s dimensions. These samples are drawn from two different distributions 𝑃𝑋
and 𝑃𝑌 . MMD gives an estimate of the distance between the two distributions. If this loss becomes
0, then 𝑃𝑋 = 𝑃𝑌 . In our case, we compute the MMD between real and generated samples on each
iteration of the generator’s training, over one full batch. Therefore, 𝑁 = 𝑀 = 𝑛, where 𝑛 is the
batch size. Then, 𝑘 (𝑥, 𝑥 ′) = 𝑒𝑥𝑝 (− 1

2𝜎 |𝑥 − 𝑥 ′ |2) represents the Gaussian kernel with 𝜎 being the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Dogariu, et al.

bandwidth parameter. Leveraging this algorithm, we can get an explicit feature map by using a
Taylor series expansion with an infinite number of terms which, in theory, covers all orders of
statistics. The rationale behind adding the MMD is that we wanted the generator to have two
objectives: generating good enough samples that fool the discriminator while at the same time
matching the statistical moments of the training distribution. Since it is not clear beforehand which
of the two terms has more importance, we added a weighting parameter that was varied (between 0
– original GAN formulation and 1 – generator trained solely on MMD loss) throughout the training
procedure.

4.1.4 Wasserstein training. For each of the aforementionedmodels we applied two different training
frameworks. One is the vanilla GAN setup [26] and the other is the Wasserstein GAN setup [2],
with gradient penalty. The change to be done here was only in the way the training was performed
and not in the model architectures. In the Wasserstein models’ case, for each epoch we trained the
Discriminator for 5 iterations, then the Generator for 1 iteration.

4.2 Variational Autoencoders
We built two VAE models in close connection to the GAN architectures described above, one
based on𝑀𝐿𝑃2 and the other on 𝐹𝐶𝐺𝐴𝑁3. The discriminator’s structure was copied in the encoder
and the generator’s structure was copied in the decoder. Regarding the rationale of these specific
architectures, we found these two approaches (one for MLP and one for FCGAN) to offer the best
stability in the long-run training so we continued with them only in the extended testing phase
that is introduced in the next sections. As also explained in Section 3, there are other properties of
the financial time-series which are not easily quantifiable (such as volatility clusters, auto and cross
correlation for specific lag values etc.). It was our intuition that these properties may be hidden in
a lower, fundamental, dimension of the data which led to the choice of VAEs. Moreover, VAEs have
a more direct way of training which can be assessed numerically with the help of the RMSE. The
input of the VAE, 𝑥 , is encoded into the mean and variance vectors. Random noise 𝜖 is drawn from
the Gaussian normal distribution N(0, 1), multiplied with the variance and the result is added to
the mean, forming 𝑧 ∼ N(𝜇, 𝜎2), which is decoded into the output 𝑥 ′. In both cases, the encoder of
the VAE would replicate the layer structure of the discriminator from its GAN correspondent and
the decoder would follow the generator layout. We chose the bottleneck for both models to be of
size 20.

The cost function that we minimize during the VAEs’ training is as follows:

L𝑉𝐴𝐸 = 𝛼L𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + (1 − 𝛼)L𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (5)
= 𝛼𝑀𝑆𝐸 (𝑥, 𝑥) − (1 − 𝛼)𝐷𝐾𝐿 (𝑞(𝑧 |𝑥) | |𝑝𝑚𝑜𝑑𝑒𝑙 (𝑧)), (6)

where 𝛼 is a weighting factor,𝑀𝑆𝐸 is the mean square error,𝐷𝐾𝐿 is the Kullback-Leibler divergence,
𝑥 is the reconstruction of the input, 𝑞(𝑧 |𝑥) models the encoder network and 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑧) the decoder
network. Additionally, the weighting factor helps us analyze the impact of each of the two losses.
For 𝛼 = 1

2 we obtain the original VAE loss formulation. Choosing this loss function was motivated
by the fact that for this application it is more useful to capture the overall data distribution rather
than reconstruct the input samples, especially since we treated the entire generation process
predominantly from a statistical point of view. More so, our intuition was that if we focused more
on the reconstruction than on the regression part, we would end up with averaged versions of the
input, which would probably help the prediction part due to the smoother nature of the data, but
would definitely fail in the subjective metrics described in Section 6.1.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:9

4.3 Generative Moment Matching Networks
The key idea of GMMNs is the use of a statistical hypothesis testing framework, namely the
maximum mean discrepancy (MMD). Minimizing this discrepancy is equivalent to replicating the
statistical moments. That is, if the samples generated by the model follow a distribution whose
moments match those of the training data distribution, then the two distributions (empirical and
model) are bound to be similar.
The setup for successfully creating a GMMN involves first training an autoencoder on a given

dataset. Next, the encoder is used to transform the input data into the latent code space. The
generator is then trained to sample data from the latent code distribution which, in turn, will be
transformed by the autoencoder’s decoder into new samples. Autoencoders, by themselves, have a
discrete latent code distribution, which makes them unusable for generation. GMMNs, however,
infer a continuos data distribution over the latent code space. One disasdvantage of this method is
that it requires large batch size in order to have the moment estimation average over a statistically
significant number of samples. This setup is also known as GMMN+AE. The autoencoder is trained
to encode the training samples, 𝑋 , into a latent vector representation, 𝑧. Afterwards, the GMMN is
trained to map the noise vector 𝑛 to the latent vector distribution. The GMMN ensures that the
model’s latent code distribution and that of the training data are similar by minimizing the MMD.
This means that we can generate new samples from the continuous latent code distribution which
will be transformed, by the autoencoder’s decoder, into new samples, 𝑋 ′.

The use of MMD in the GANs and the GMMN+AE is slightly different. For GANs, we use it
as a weighted term in the generator’s cost function in order to force it to also focus on matching
the statistics of the training data. For GMMN+AE, we use it to train a noise-driven generator that
outputs values in the autoencoder’s latent code (bottleneck) distribution by matching the central
moment statistics of this space, thus adding the generating capabilities to the autoencoder. Similarly
to the VAEs, we use the same two encoder-decoder setups, 𝑀𝐿𝑃2 and 𝐹𝐶𝐺𝐴𝑁3. The moment
matching network is an MLP with the 𝑛𝑧 − 40 − 80 − 120 − 180 − 𝑛𝑜𝑢𝑡 structure. 𝑛𝑧 represents the
dimension of the noise vector, set to 100. 𝑛𝑜𝑢𝑡 is the dimension of the autoencoder’s bottleneck and
depends on the encoder-decoder architecture.

5 DATA
Financial data is different from most other types of multimedia data in the sense that it possesses
several distinct properties, as discussed in Section 3. Furthermore, each country has its own stock
market with specific companies and specific behaviours. This means that we will see differences in
how the stock market evolves in different countries. This discrepancy affects financial algorithms
and makes it difficult to perform a fair comparison between models trained on different stock
markets. However, it has become the norm to train, validate and compare results on the S&P500
dataset. Financial data is publicly available for each listed company, but gathering data from all
companies under a single dataset, aligning them from a temporal point of view and pruning them
is currently an effort that resides behind a pay-wall.

5.1 Dataset Creation
We train our generative models on the S&P dataset provided by Hana Institute of Technology.
This dataset consists of 1,506 companies with daily closing prices records from January 1st 2000 to
March 31st 2020. Compared to the commonly used S&P500 dataset, it contains more companies
(1,506 vs 500), but our dataset spans a shorter time interval (start date is January 1st 2000 vs 31st
March 1964). We address only the most recent 20 years of data because they are closer to current
market behaviour than older stocks. We chose the granularity of the data to be at a daily level

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Dogariu, et al.

Fig. 2. Visual representation of the S&P dataset layout in time.

after running preliminary experiments that showed that a finer granularity, e.g., hour-based, would
bring significant noise to the monitored statistics, whereas a coarser granularity, e.g., week-based,
would overlook important variations that took place during the workweek.

In this dataset, the financial time series are available for companies which entered the stock
market (were listed) at different times, so we expect them to start at different moments on the time
axis. However, all companies were still active on the stock market at the moment when the data
was gathered, meaning that these time series last until the same day. In other words, the dataset
consists of time series with different starting dates, but the same end-date. We illustrate in Figure 2
how this time series are laid out in time. This introduces a certain bias, since there is no available
data related to companies that disappeared from the stock market at previous moments (due to
bankruptcy, fusion or being bought by other companies).
Our generative models restrict us from using varying length inputs, therefore we need to feed

them fixed size data. The solution that we found for this problem was to split each available time
series into segments of a fixed number of samples using a sliding window mechanism. Starting
from the earliest position from our dataset we began extracting segments of 250 samples for each
company (or ticker, as depicted in Figure 2) in order to prepare the data for processing. This amount
is equivalent to one working year’s worth of samples and is a reasonable choice since it allows
capturing possible seasonality (events happening once per season/year) and it is not long enough
for the market to change drastically between the start and end point. When fixing such a window
it is possible to encounter tickers that have an incomplete set of samples due to the fact that they
appeared on the stock market sometime during the captured window time interval. This problem
can be dealt with in two possible ways. One can pad the incomplete segments with 0 until they
reach the full extent of the window or remove them completely. We chose to drop these segments
completely in order to avoid altering the dataset by adding hard coded values. We formally represent
missing values from these incomplete segments as ‘NaN’. Consequently, if the starting position of
a segment is ‘NaN’ then the segment can be deemed as incomplete. Thus, we define:

𝑊𝑖 = {[𝑥𝑖, 𝑗 , 𝑥𝑖+1, 𝑗 , ..., 𝑥𝑖+𝐿𝑤−1, 𝑗] | 𝑥𝑖, 𝑗 ≠ ‘NaN’,∀𝑗 ∈ [1, 1506]}, (7)

to be the set of all segments starting at day 𝑖 extracted from all companies among the 1,506 that are
listed on the stock market at moment 𝑖 . 𝐿𝑤 represents the length of the window, which we set to
250, as previously mentioned. Formally, we consider the start of the dataset (January 1st 2000) to be
the day with index 𝑖 = 1.
We process the rest of the dataset in a sliding window fashion, with a step of 30 samples,

equivalent to 6 working weeks, and add them to our training data set. We denote the obtained
training dataset as:

𝐷 =
⋃
𝑖=1

step 30

𝑊𝑖 (8)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:11

All data was transformed to log returns, as explained in equation 1. The closer we come to the
present with the sliding window, the more companies will present full segments over the captured
period due to the previously discussed reasons.

5.2 Dataset Preparation
The success of the time series generation process depends on the dataset preparation. Thus, an
important contribution of this paper lies in the way we addressed this step, as explained next. Our
final dataset, 𝐷 , contains more than 200k 1-dimensional entries each of length 𝐿𝑤 . An important
issue that arises here is how to draw samples from this set. In our previous work [12], we considered
𝐷 to be a homogeneous mixture of windows and randomly sampled batches of data from it . This
led to partly realistic synthetic samples, but there was no cross-correlation present between the
generated samples. This is mainly due to the fact that the generative models can encounter cross-
correlated input (values from the same time frame for different companies) only by accident. The
same approach was carried out by [78], [48] and [20] with window lengths of 8,192, 252 and 230
samples, respectively.
Cross-correlation is important in the stock market domain because companies activate in a

limited number of sectors. Thus, news that may impact a given sector will directly impact all
companies belonging to that industry and indirectly impact connected industries. For example, if
there is a global shortage of Silicium, then companies which activate in the extraction industry will
be directly affected and suffer a decrease in prices. Then, companies which use this resource for
their products will also be negatively impacted (e.g. glass industry, electronic devices industry etc.)
and from here on there is a chain reaction up to a certain point. This means that stocks belonging
to the aforementioned sectors will behave similarly when confronted with a powerful external
factor (political, social, economic etc.).
In order to feed cross-correlated samples to the models and, inherently teach the generator to

synthesize cross-correlated data, we suggest the following processing. Instead of scrambling all the
extracted windows inside a large dataset, we kept each set of segments𝑊𝑖 in their original form
and formed batches out of each such subset . This means that we process each subset as an entire
batch. We perform shuffling inside each subset and between subsets but we do not mix entries
belonging to different subsets. We are aware that this imposes the batch size of different lengths and
it also forces large batch sizes (up to 1,506), but since each window is only 250 samples long, this
does not pose any problem (maximum amount of values that are fed at one iteration is 1506 × 250
values which is less than the equivalent of one HD image). Even if this is only an implementation
issue, we discovered that it greatly helps in encoding latent connections between different stocks.
It is very helpful to have such a mechanism because usually the entire stock market responds
in approximately the same manner to strong external stimuli, e.g., economic crisis, presidential
elections, pandemic outbreaks etc.

5.3 Regime Splits
One interesting aspect about the stock market dataset is that it is generally “growing”. This means
that the values of the closing prices are increasing on the long term. In log return terms (see
Equation 1) it means that the positive values outweigh the negative ones. In this context, we need
to determine whether the short-term regime of a time series is up-trending or down-trending for
each day. We define the regime for day 𝑖 as:

𝑟𝑖 =

{
up-trending, if 𝜇×𝑖 − 𝜇×_𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑖 ≥ 0
down-trending, if 𝜇×𝑖 − 𝜇×_𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑖 < 0

(9)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Dogariu, et al.

Fig. 3. Dataset division between up-trending (green - 68.07%) and down-trending (red - 31.93%) regimes.

Here, 𝜇×𝑖 and 𝜇×_𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑖 are the cross-sectional mean and the cross-sectional rolling mean,
respectively, for day 𝑖 . If 𝐾𝑖 = {𝑥𝑖, 𝑗 | 𝑥𝑖, 𝑗 ≠ ‘NaN’,∀𝑗 ∈ [1, 1, 506]} is the set of all available samples
on day 𝑖:

𝜇×𝑖 =
1
|𝐾𝑖 |

∑︁
𝑘∈𝐾𝑖

𝑘 (10)

𝜇×_𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑖 =
1

𝐿𝑟𝑒𝑔𝑖𝑚𝑒

𝑖∑︁
𝑙=𝑖−𝐿𝑟𝑒𝑔𝑖𝑚𝑒

𝜇×𝑖 (11)

In other words, we define 𝜇×𝑖 as the mean over all closing prices from day 𝑖 and 𝜇×_𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑖 as
the mean of 𝜇×𝑖 over the previous 𝐿𝑟𝑒𝑔𝑖𝑚𝑒 days. 𝐿𝑟𝑒𝑔𝑖𝑚𝑒 is constant, representing the length of
the window on which the regime is computed. In setting its value, we examined values from
the set {30, 50, 100, 150, 200, 230, 250}. Since there was no significant difference between these
setups we decided to keep consistency with previously mentioned rolling windows so we set
𝐿𝑟𝑒𝑔𝑖𝑚𝑒 = 𝐿𝑤 = 250. Also, for 𝜇×_𝑟𝑜𝑙𝑙𝑖𝑛𝑔𝑖 we applied a triangular rolling window. Again, this had no
significant impact over applying a regular rolling window. We show in Figure 3 how the market is
distributed between up-trending and down-trending.

Performing this split based on regimes results in labelling 68.07% of the days as being up-trending
and the rest of 31.93% as down-trending. The difference between the two regimes is significant
enough to take into consideration the fact that adding data belonging to only one of the two regimes
in the training process might introduce some noise in the generative models’ outcome. Therefore,
we decided to implement 2 strategies for training each of our models. The first one was to train
each model with the complete dataset 𝐷 . The second one was to compute the regimes for each
day on the original dataset, split the dataset according to the two regimes and then apply the
windowing mechanism described in Equations 7 and 8 on each of the two regimes. This means
that for each architecture setup we trained 3 models: a complete one, trained on the entirety of
the dataset without regime splits, an up-trending one, trained only on up-trending days and a
down-trending one, trained only on down-trending days. We denote these 3 versions as ‘complete’,
‘up’ and ‘down’, respectively.

5.4 Synthetic Time Series Formation
Once we have the generators trained to output a fixed length time series, we need to combine
them such that we obtain arbitrary size time series. In the case of the ‘complete’ models we simply
generate several batches of fixed-length and concatenate them together until reaching the desired
length. For the ‘mixed’ regimes approach, however, we apply the following procedure. We rely on

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:13

the fact that the up-trending and down-trending regimes come in bursts of 20 to 120 (statistically
determined) consecutive samples. Moreover, we know the final quota of each of the two regimes.
Therefore, we sample segments of random length between 20 and 120 samples with a 68% probability
of them coming from the ‘up’ model generator and 32% of them coming from the ‘down’ model.
We concatenate these segments until we reach the desired time series length. Also, adjusting the
batch size for the generator is equivalent to setting the number of stocks that we want to generate
for a given period, i.e. the financial universe size.

6 EVALUATION PROCEDURE
While the evaluation of classification and retrieval systems is a well known problem and many
metrics have been validated through time [61], the evaluation of synthetic generated data is still an
open issue and an entire research domain by itself [25, 79], especially in the financial field. Several
attempts have been made to assess the goodness of synthesized images, e.g., Inception Score [74]
and Fréchet Inception Distance [32] but transforming financial time series to images behaves poorly
when evaluated by a neural network trained on natural images. We therefore analyze and propose
a series of metrics that were inspired by signal processing problems. Most of these metrics are still
experimental regarding how accurate they can describe the performance of financial data synthesis,
but they can still give an idea on a hierarchy between different models. We approach the evaluation
at three levels: (i) qualitatively, (ii) quantitatively, and via a (iii) predictive accuracy test, presented
as follows.

6.1 Qualitative analysis
Lucic et al. [59] argue that it is necessary to report a summary of distribution of results, rather
than a single best result achieved. To capture as much information as possible, we randomly select
one batch of real data and one of synthesized data during each epoch and we compare several
metrics. Graphical examples of how these metrics were assessed are available in the appendix.
Since many architectures and variations have to be compared, a complete qualitative analysis is
virtually impossible. To overcome this setback, we propose to explore the following properties:

• Central moments— one way to determine whether two distributions are alike is to examine
their statistical central moments. If the samples generated from two distributions have similar
behavior in terms of mean, variance , skew and kurtosis, it is a strong indicator that the two
distributions might be similar.

• Autocorrelation— awell-known property of financial time series is that they do not posses a
linear predictability, meaning that the autocorrelation of the returns is a diminishing function.

• Heavy-tailed distribution — financial time series are known to exhibit a heavy-tailed
behavior, i.e., their distribution presents a higher probability than a normal distribution of
sampling very high and very low values. This translates in having a taller peak than normal
distributions and thinner middle.

• Volatility clustering — another well-known property is the volatility clustering, meaning
that changes (either high or low) come grouped in clusters. In other words, small changes
tend to be followed by small changes and high changes tend to be followed by high changes,
respectively. This can be assessed by examining the autocorrelation plot of non-linear trans-
formations of returns such as squared returns or absolute returns where no significant
autocorrelation can be observed.

• Cumulative sum — plotting the cumulative sum of the returns of any company should yield
a non-monotonous curve with varying shapes. The cumulative sum for any company, at time

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 Dogariu, et al.

𝑖 is defined as 𝑐𝑖 =
∑𝑖
𝑘=0 𝑟𝑖 , where 𝑟𝑖 is the log return from equation 1. We are interested in

the general form of these graphs and not in specific values.
• Trend ratios — we define the trend ratio as:

𝑡𝑟𝑜𝑖 =
𝑡𝑟𝑒𝑛𝑑𝑖

𝑛𝑖
, (12)

where 𝑡𝑟𝑒𝑛𝑑𝑖 = 𝑐𝑖
𝑐𝑖−𝐿𝑡

−1 is the stock’s trend and𝑛𝑖 =
∑𝑖
𝑘=𝑖−𝐿𝑡

��� 𝑐𝑘𝑐𝑘−1 − 1
��� the noise corresponding

to the same stock. Here, 𝐿𝑡 is the trend lookback window which we set to 20. Again, we are
interested only in the general form of these graphs.

6.2 Quantitative analysis
Quantitative analysis is generally quite difficult to perform on generative models, especially in the
context of this relatively new issue of financial data generation. To provide a solution, we adapt
metrics that are generally used in the information theory field as well as metrics designed for
generative models but in other fields, such as image and speech processing, namely:

• Kullback-Leibler divergence [50] — this is a measure of how one probability distribution
is different from another. Since it is not a symmetric result, we set the real data distribution
as reference and computed the metric for all synthetic data distributions. This measures
the capability of our models to assign high probability to most realistic points [25]. For
continuous probabilities it is defined as:

𝐷KL (𝑃 | |𝑄) =
∫ ∞

−∞
𝑝 (𝑥) log

(
𝑝 (𝑥)
𝑞(𝑥)

)
𝑑𝑥, (13)

where 𝑃 and 𝑄 are distributions of 2 continuous random variables and 𝑝 and 𝑞 denote the
probability densities of 𝑃 and 𝑄 , respectively. We are interested in the lowest values that we
can attain.

• Jensen-Shanon divergence [55] — compared to the Kullback-Leibler divergence, the Jensen-
Shanon divergence is symmetric, and it is a measure of similarity between two probability
distributions. It is defined as:

𝐽𝑆𝐷 (𝑃 | |𝑄) = 1
2
𝐷KL (𝑃 | |𝑀) + 1

2
𝐷KL (𝑄 | |𝑀) , (14)

where𝑀 = 1
2 (𝑃 +𝑄) is the average of the two distributions, 𝑃 and𝑄 . Again, we are interested

in the lowest values.
• Kolmogorov-Smirnov test statistics [62] — this is a method of telling if two samples
belong to the same distribution or not. We run this on two randomly selected batches, one of
real data and one of synthesized data and report the K-S statistics. A low value means that we
cannot reject the hypothesis that the two instances are from the same data distribution. With
the increase in the number of samples for each instance we expect a more precise statistic.

• Earth Mover’s distance [41] — the first Wasserstein distance between two 1D distributions.
It can be seen as the minimum amount of "work" required to transform distribution 𝑢 into
distribution 𝑣 , where "work" is measured as the amount of distribution weight that must be
moved, multiplied by the distance it has to be moved. It is defined as:

𝑙1 (𝑢, 𝑣) = inf
𝜋 ∈Γ (𝑢,𝑣)

∫
R×R

|𝑥 − 𝑦 |d𝜋 (𝑥,𝑦), (15)

where Γ(𝑢, 𝑣) is the set of (probability) distributions on R × R whose marginals are 𝑢 and 𝑣
on the first and second factors respectively.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:15

All of these metrics are in accordance with the optimization criterion of the generative models and
we found them to be the most adequate for our setup from an information theoretic point of view.

6.3 Predictive accuracy test
To assess the quality of the synthetic data, we propose to predict stock market movement by
framing the prediction as a classification problem, discerning whether stocks are up-trending or
down-trending at a predefined time point, as the movement information is inherently generated
from price. The goal is to provide profitable buy and sell action signals. In this context, this section
presents a deep learning approach for financial time series prediction, involving four stages: (i)
statistical clustering of stocks based on their normalized returns, (ii) statistical labelling of stocks in
up-trending or down-trending, (iii) denoising and reducing the dimensionality of representations
using a stacked autoencoder model, and (iv) training predictive models to generate the one-step-
ahead output. In the following, we explain each block in detail.

6.3.1 Statistical Clustering for Industry Classification. We have selected an unsupervised learning
algorithm in the detriment of the industry classifications such as GICS3, NAICS4, Finviz5, etc., (which
are independent of the pricing data) because the synthetic data is unknown to the aforementioned
classification schemes, therefore, we are required to use an automatic algorithm to cluster the real
and synthetic stock universe. In this context, we used the protocol in [39] by applying the k-means
clustering algorithm to cluster the entire universe of stocks according to how close the normalized
returns are to the cross-sectional means of the parent clusters. Let 𝑁 be the number of observations,
𝑑 the trading days, and 𝑅𝑖𝑠 the daily stock returns, 𝑖 = 1, ..., 𝑁 , and 𝑠 = 1, ..., 𝑑 . We cluster the
normalized returns 𝑅𝑖𝑠 , where 𝑅𝑖𝑠 = 𝑅𝑖𝑠

𝜎𝑖𝑢𝑖
, 𝑢𝑖 = 𝜎𝑖

𝑣
and 𝑣 = 𝑒𝑥𝑝 (𝑀𝑒𝑑𝑖𝑎𝑛(𝑙𝑛(𝜎𝑖)) − 3𝑀𝐴𝐷 (𝑙𝑛(𝜎𝑖)))

. For all 𝑢𝑖 < 1, 𝑢𝑖 ≡ 1, and Median(·) and MAD(·) are cross-sectional. The standard deviation is
computed with a loopback of 100 days, the clusterization is set to 15 clusters, performed with a
loopback of 1000 days, and a stride of 30.

6.3.2 Statistical Labeling. To predict stock trend, we formulate the task as a classification problem
by classifying stocks into up-trending and down-trending for each period in the training set and
for each statistical cluster defined previously. Let 𝑃𝑖𝑠 be the time series of stock prices, where
𝑖 = 1, . . . , 𝑁 labels the stocks, and 𝑠 = 1, . . . , 𝑑 labels the trading days, a time series from day 𝑠 will
be assigned with a corresponding label, denoted 𝐿𝑖𝑠 , according to the value of 𝑃𝑖𝑠 compared to the
median of the cluster it belongs to. If 𝑃𝑖𝑠 is greater or equal to the median, then 𝐿𝑖𝑠 = 1, otherwise
𝐿𝑖𝑠 = 0.

6.3.3 Denoising and dimensionality reduction. Because of the huge number of immediate mar-
ket movements and trade noise, financial data has a complicated structure of irregularities and
roughness. The noise in financial data generally shows strong tailedness, which means that the
underlying time series data has a lot of sharp breaks every once in a while. Ignoring these anomalies
might lead to erroneous data mining and statistical modeling results. As a result, in order to unveil
more meaningful representations, we propose to denoise and reduce the dimensionality of the data
using a stacked autoencoder structure (SAE) by layering a succession of single-layer autoencoders
(AEs). In this regard, the input daily log returns are mapped into the first hidden vector using the
single-layer autoencoder. The reconstruction layer of the first single-layer autoencoder is discarded
after training, and the hidden layer is passed as the input layer of the succeeding AEs. By trial
and error, the bottleneck’s size is fixed at 16, and the depth is set to 4. The denoising is obtained
3https://www.msci.com/gics
4https://www.census.gov/naics/
5https://finviz.com/

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.msci.com/gics
https://www.census.gov/naics/
https://finviz.com/

111:16 Dogariu, et al.

by encoding and then decoding the input. If we reconstruct the time series using the bottleneck
features, we will reduce the outliers and get a smoothed input estimate to predict the future stock
prices. The dimensionality reduction is obtained by encoding the input and using the bottleneck
features to predict future stock prices.

6.3.4 Prediction. Three variants of DNN have been implemented and tested, started with universal
approximators such as a 4-layer perceptrons (MLP), and moving forward with a 1D ResNet50
variant [30], and finally a bidirectional Long Short Term Memory (BiLSTM) network with the goal
of avoiding the long-term dependency problem of time-series data. We run our simulations over
18 years of data (from 2000 up to 2020, with the first 3 years being used solely for the statistical
clustering), using two protocols i) train and test on real data, and ii) train on a mix of real and
synthetic data and test strictly on real data. Both scenarios involved using a split protocol of past 7
years’ worth of data for training and the following year for testing, in a rolling window manner,
until we pass through the whole dataset. We use the first protocol to build a baseline approach.
The bidirectional LSTM achieved the best results when trained on real data, and tested on real data
so we report it as our baseline. This approach will further be compared with the second protocol,
where the same model is trained on the mix of real and synthetic datasets to asses whether the
synthetic data improves the prediction of up-trending and down-trending stocks or not. To the
best of our knowledge, our work is the first to perform trend prediction on such a long time span
and for so many companies.

End date

Training Testing

Start date

7 Years 1 Year

Training Testing

Training Testing

......

Fig. 4. Continuous dataset arrangement for training and testing during the entire sample period.

7 RESULTS AND DISCUSSION
Each generative model took 6±1 hours to train for 100 epochs on an NVIDIA QUADRO M4000,
using the PyTorch[69] framework and we examined the results of a total of approximately 1200
models (excluding the preliminary stages where we established the final architectures and training
setups). The pre-processing part took about 0.5 hours for each experiment, but since it was the
same for all models, we saved the state of the system after pre-processing was computed and used it
from that point on for each model. Regarding the prediction setup, the pre-processing took roughly
20 minutes and the entire training about 2 hours on the same hardware. As there are very few
other approaches tailored for this type of time series data generation in the literature, we compare
our proposed architectures to the ones in [78] and with our previous work [12]. Due to the vast

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:17

number of experiments that we conducted, presenting all the results is physically impossible (we
explored the outcome after more than 100 different epochs for more than 650 network models),
which led us to adopting the following best-performer selection process. We made snapshots of each
network setting whenever it would encounter a new best value for any of the proposed quantitative
metrics. Afterwards, we manually inspected all the qualitative metrics of these snapshots. Empiric
results show that among the proposed metrics, the Jensen-Shannon divergence is the best indicator
to which model has a better overall performance, so we present the results for the snapshots
that achieved the best JSD for each model. Also, between vanilla and Wasserstein training setups,
preliminary results and previous work [12] suggest that the Wasserstein GANwith gradient penalty
was superior in all aspects so we continued solely with this framework for the GAN setups. By
examining the results synthesized in Table 1 we draw the following conclusions.

7.1 Training Results
Regarding the models’ training procedure there are several aspects that are worth mentioning.
The majority of models that produced viable results were trained with a learning rate of 1e-04.
We carried out experiments with the following learning rates: 1e-03, 5e-04, 1e-04, 1e-05. Choosing
betweenmixed or complete models does not have a major influence on the trend prediction accuracy.
Both techniques offer similar results, thus validating our mixing technique. Only 2 cases ended up
with considerable differences: FCGAN_2 (the complete model outperforms the mixed model by
0.29%) and MLP_1 (the mixed model outperforms the complete model by 0.17%). All other model
pairs have small differences (<0.1%). In all cases, however, the lower performing models still bring a
meaningful improvement to the ground truth dataset and help the prediction models in achieving
higher accuracy.

Batch normalization layers do not not hurt the model training anymore. A possible explanation
for this is that in the stock market all prices across one day usually follow the same trend. If a
major event happens, it is likely to affect the entire market in the same direction for all stocks.
Therefore, log returns of different companies do not have significantly different values for a given
day. Consequently, applying batch normalization on cross-sectional batches of data is likely to
adapt well on individual samples (since they will all have similar mean and variance). This does
not happen in the setup proposed in [12] and [78], where batch normalization layers lead to the
notorious mode collapse. Another argument that batch normalization is not an issue anymore
comes from the fact that models such as MLP_1 and FCGAN_1, which contain batch normalization
layers, achieved valid results, as opposed to the works in [12, 78] where any model containing
batch normalization layers would fail.

Lastly, balancing the different losses (the 𝛼 parameter in Equations 3 and 5) for each model one
way or another does not have a meaningful impact on the result. Each of our models was trained
under 5 different setups depending on the values for 𝛼 : 0, 0.3, 0.5, 0.7 and 1.

7.2 Metric Results
We can identify several metrics that especially emphasize bad models, which is useful in reducing
search time for good candidates. For example, the Jensen-Shannon divergence is a very strong
indicator for bad models. Namely, high values of JSD mean that the model does not perform well.
Good values, on the other hand, generally indicate good models. However, this is not flawless,
since this metric can be confusing especially when the model collapses to a single sample. This
sample was already computed as a solver for minimizing the JSD in the generative model’s cost
function, therefore obtaining low JSD values, but having bad overall characteristics. This is the
case for the the sn_FCGAN complete model, which despite achieving a JSD value of 0.0666 (among
the smallest ones), generates the same sample, irrespective of the noise vector that is used to drive

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 Dogariu, et al.

Table 1. Qualitative and quantitative results. The * in the Regime column indicates that the respective model
resulted in a mode collapse. Qualitative metrics that have been met by the model are indicated by ‘yes’,
whereas missing them by ‘no’.

Model Regime Mean Var Skew Kurtosis Autocorr Heavy
tail

Cluster
Volatility

Cum
Sum

Trend
Ratio JS KL K-S EM

MLP_1 complete yes yes yes no yes no no yes yes 0.4511 237.8 0.2759 0.1254
MLP_1 up no no yes no no no no yes yes 0.575 698.4 0.3546 0.1053
MLP_1 down no no yes no yes no no yes yes 0.4782 394 0.302 0.1103
MLP_1 [12, 78] N/A no no yes no no no no N/A N/A 0.5757 721.5 0.5757 0.114
MLP_2 complete* no no no no no no no no no 0.4845 276.9 0.3204 0.1196
MLP_2 up* yes no no no no no no no no 0.6263 961.6 0.4019 0.1424
MLP_2 down* yes no no no no no no no no 0.6841 677.4 0.4184 0.4029
MLP_2 [12, 78] N/A yes yes yes no yes yes no N/A N/A 0.0897 29.81 0.0301 0.0028
MLP_3 complete* yes no no no no no no no no 0.5836 621.4 0.3774 0.2012
MLP_3 up* yes no no no no no no no no 0.7216 1359 0.445 0.3872
MLP_3 down* no no no no no no no no no 0.6552 845.8 0.4115 0.413
MLP_3 [12] N/A yes yes yes no no yes no N/A N/A 0.1235 128 0.0465 0.0088
WMLP_3 [12] N/A yes yes yes yes yes yes no N/A N/A 0.1031 39.08 0.0323 0.003
MLP_4 complete yes yes yes no yes yes no yes yes 0.1225 35.69 0.07936 0.00697
MLP_4 up yes yes no no yes yes no yes yes 0.2692 186.4 0.1641 0.01232
MLP_4 down yes no no no yes no no yes yes 0.6354 536.4 0.3845 0.281
MLP_4 [12] N/A yes yes yes no no no no N/A N/A 0.2095 99.89 0.131 0.0106
FCGAN_1 complete yes no no no yes no yes no yes 0.2947 140.1 0.1818 0.06226
FCGAN_1 up yes yes yes no no no no yes yes 0.4541 395.2 0.2745 0.07718
FCGAN_1 down yes yes no no yes no no yes yes 0.4595 287.7 0.3001 0.2058
FCGAN_1 [12, 78] N/A no no no no no no no N/A N/A 0.2315 197.5 0.1709 0.0115
WFCGAN_1 [12] N/A yes yes yes no yes yes no N/A N/A 0.057 18.23 0.0359 0..0018
FCGAN_2 complete no yes yes no no yes no yes yes 0.1592 42.44 0.1385 0.01779
FCGAN_2 up no no no no no no no no no 0.3776 256.9 0.2438 0.06838
FCGAN_2 down no no yes no yes no no yes yes 0.5569 381.8 0.3451 0.2074
FCGAN_2 [12, 78] N/A yes yes yes yes no yes no N/A N/A 0.0454 13.26 0.0178 0.0011
WFCGAN_2 [12] N/A yes yes no no no yes yes N/A N/A 0.0825 26.06 0.0387 0.0034
FCGAN_3 complete* yes no no no no yes no no no 0.1198 83.27 0.05527 0.00156
FCGAN_3 up* yes no no no no yes no no no 0.1576 267.4 0.07755 0.00376
FCGAN_3 down* yes no no no no yes no no no 0.2508 92.44 0.1136 0.08977
FCGAN_3 [12] N/A no no no no no no no N/A N/A 0.5341 673.8 0.4007 0.1026
FCGAN_4 complete yes yes no no no yes no yes yes 0.1324 82.87 0.0525 0.002
FCGAN_4 up yes no yes yes no yes no yes yes 0.1739 92.61 0.1051 0.0056
FCGAN_4 down yes yes no no no yes no no no 0.1294 46.47 0.0902 0.0107
sn_FCGAN complete* yes yes yes no no yes no no no 0.0666 5.613 0.0383 0.0039
sn_FCGAN up* yes yes no no no no no no no 0.4882 719.4 0.3216 0.0525
sn_FCGAN down* no no no no no no no no no 0.2985 140.1 0.2476 0..0475
sn_FCGAN [12] N/A no no no no no yes no N/A N/A 0.0953 23.53 0.0408 0.0031
FCGANmc [12] N/A yes yes yes yes no yes no N/A N/A 0.1101 78.16 0.0797 0.0032
GMMN_AE_FC complete* no no no no no no no no no 0.1211 155.9 0.03031 0.00153
GMMN_AE_FC up* no no no no no no no no no 0.1926 436.9 0.1069 0.00358
GMMN_AE_FC down* no no no no no no no no no 0.2783 985.3 0.141 0.00951
GMMN_AE_MLP complete* no no no no no no no no no 0.3671 1349 0.1937 0.0165
GMMN_AE_MLP up* no no no no no no no no no 0.2576 1417 0.1237 0.0052
GMMN_AE_MLP down* no no no no no no no no no 0.2278 822.4 0.0941 0.0072
VAE_FC complete yes yes yes yes yes yes no yes yes 0.0929 14.26 0.0553 0.00566
VAE_FC up yes yes yes yes yes yes no yes yes 0.07917 42.5 0.0273 0.00156
VAE_FC down yes yes yes yes yes yes no yes yes 0.09543 30.97 0.0343 0.00357
VAE_MLP complete yes yes yes yes no yes no yes yes 0.1058 54.4 0.07054 0.00312
VAE_MLP up yes no yes yes yes yes no yes yes 0.06591 21.67 0.03615 0.00182
VAE_MLP down yes no yes no no yes no yes yes 0.09136 19.79 0.04364 0.00331

the generator. The same thing happens to the GMMN_AE family. All of them present lower JSD
values than MLP_1, for example, but behave poorly in absolutely all qualitative aspects. Another
indicator of bad models is the cumulative sum. Samples that follow the exact same path indicate
that the generator model outputs the same values at each inference, therefore it resulted in a mode
collapse. However, this indicator must be visually analyzed in order to draw conclusions as there is
no straightforward way of numerically assessing this property. Finding a way of quantitatively

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:19

characterizing the cumulative sum difference between two or more time series could result in a
very good exclusion criterion.

We noticed that models that generate samples whose probability density function (PDF) matches
the real samples’ probability density function tend to offer good results. This information is
integrated in the ‘Heavy tail’ property. Oppositely, non-overlapping PDFs indicate bad models.
This can be assessed by examining the heavy-tail property, which also incorporates the PDF of the
generated samples. We also noticed that models that managed to fit the 4th central moment, i.e.,
kurtosis, behave well on many levels. This can constitute a ranking criterion in future developments
and was met only by FCGAN_2 and the VAE family. As it is also pointed out in [12, 78], cluster
volatility is difficult to meet. In our experiments, only FCGAN_1 managed to meet this property.
Fitting the autocorrelation property, however, improved as compared to our previous work [12].
With our new approach, 12/39 (30.76%) models managed to capture autocorrelation, while previous
models [12] had a lower rate: 3/12 (25%). We believe that the proposed dataset preparation technique
helped in capturing autocorrelation by feeding cross-correlated samples at each iteration. Based on
the number of properties that our models succesfully managed to capture and on the quantitative
metrics that were obtained, we compiled a shortlist of best performing models belonging to
each major class that was implemented: MLP_4 complete, FCGAN_4 up, sn_FCGAN complete,
GMMN_AE_FC complete and VAE_FC complete. Out of these, the clear winner is VAE_FC complete,
which outperforms every other model in almost every aspect.

7.3 Prediction Results
Trained strictly on real data, and tested on real data, the best performer was the BiLSTM network
achieving a score of 50.04%, becoming the baseline reference for our research.We further augmented
the training data set with synthetic data obtained with each of the models presented in Table 2
and tested the baseline algorithm on real data to asses whether the synthetic data add value to
our research. We report the mean accuracy obtained over the 10 train-test split pairs presented in
Section 6.3 as well as the maximum accuracy over all evaluation periods. The motivation is that
the mean accuracy offers a general appreciation of how well such a model is adapted to the entire
period, whereas the maximum accuracy finds the best performing training + testing periods. One
could argue that after finding the maximum accuracy it would be worth freezing the said model and
use it to predict the market performance on the entire validation dataset. The maximum accuracies
are on average 0.11% higher than the mean accuracies showing an important performance variation,
confirming the volatility nature of stock markets. The baseline value was obtained by training the
prediction algorithm with real data only and tested on real data.
One important note regarding prediction accuracy values is that most papers in the literature

report accuracies in the 50%-65% range: Feng et al. [19] obtained accuracies of 57.2% and 53.05% on
datasets containing 88 and 50 stocks, spanning 2 and 9 years, respectively; Hu et al. [34] reached an
accuracy of 47.8% on 2527 stocks, over the course of 3 years; Kinlay[46] tested 1 million different
prediction models and obtained an accuracy of 51.5% on 10 stocks, spanning 10 years; Liu [57]
obtained an accuracy of 66.93% on 473 stocks, spanning 12 years; finally, Wiese et al. [82] report
a prediction accuracy of 58.23% on 88 stocks, over 2 years. We can see a large variety in the
results and this is mostly due to the way the experiments were conducted as there is no universal
consensus regarding the training and testing dataset, which makes prediction results difficult to
compare. Our financial partners clearly expressed that achieving 52% true prediction accuracy for
this application is nearly impossible and that would lead to immense financial profits, so we set this
as a gold standard. Contrary to the enumerated approaches, we report the average results obtained
on 1,506 companies over 20 years. This is a significantly larger dataset than anything reported
in the literature. Moreover, we did not make any selection as to what periods to report. This is

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 Dogariu, et al.

Table 2. Augmented dataset evaluation accuracies.

Model Mean accuracy Max accuracy

MLP_1_complete 50.12% 50.26%
MLP_1_mixed 50.30% 50.58%
MLP_2_complete 50.41% 50.56%
MLP_2_mixed 50.40% 50.48%
MLP_3_complete 50.38% 50.43%
MLP_3_mixed 50.40% 50.50%
MLP_4_complete 50.34% 50.45%
MLP_4_mixed 50.27% 50.38%

FCGAN_1_complete 50.27% 50.40%
FCGAN_1_mixed 50.35% 50.45%
FCGAN_2_complete 50.40% 50.54%
FCGAN_2_mixed 50.11% 50.27%
FCGAN_3_complete 50.37% 50.43%
FCGAN_3_mixed 50.28% 50.37%
FCGAN_4_complete 50.39% 50.46%
FCGAN_4_mixed 50.32% 50.41%

sn_FCGAN_complete 50.31% 50.48%
sn_FCGAN_mixed 50.39% 50.44%

GMMN_AE_FC_complete 50.40% 50.44%
GMMN_AE_FC_mixed 50.42% 50.52%
GMMN_AE_MLP_complete 50.40% 50.48%
GMMN_AE_MLP_mixed 50.41% 50.57%

VAE_FC_complete 50.31% 50.41%
VAE_FC_mixed 50.29% 50.42%
VAE_MLP_complete 50.18% 50.28%
VAE_MLP_mixed 50.22% 50.32%

Baseline 50.04% 50.08%

important, since the year 2008 introduces a strong disturbance in the algorithms’ performance
due to the financial crisis, when most patterns were broken and almost all companies suffered
important losses. Finally, our trend prediction algorithm is focused more on fairness (following
the correct steps such that no information from the future is leaked into the training set) than on
achieving the best performance, since this is not our goal, because subtle errors can occur very
often and lead to unrealistically high prediction results.

Looking at the previously compiled shortlist of models we can see the following absolute accuracy
improvements over the baseline: MLP_4 complete (+0.30%), FCGAN_4 up (+0.28%), sn_FCGAN
complete (+0.27%), GMMN_AE_FC complete (+0.36%) and VAE_FC complete (+0.27%). Given that
these accuracies are computed as an average over 1506 companies’ performances, and that the
baseline prediction accuracy is 50.04%, we can conclude that the proposed generative models
achieved their intended purpose of boosting the trend prediction accuracy.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:21

7.4 Takeaway Findings
Closely examining each model allowed us to identify several key aspects:

• Under the GAN formulation, Wasserstein training (with gradient penalty) outperforms its
vanilla counterparts. As mentioned before, all preliminary experiments indicated this aspect.

• There are several models that converged to generating a single sample, irrespective of the
noise vector used to drive the generators. These models are marked with * in Table 1 and
among them are the spectral normalization GANs and GMMNs. This indicates that these 2
types of generative networks are not well suited for this problem.

• Variational models reached convergence much faster than all other models. On average, it
took them 20 epochs to reach the best state, whereas other models took 59 epochs.

• Variational models offered the best overall results. We ranked the models based on each
individual quantitative metric, we averaged these ranks and performed a final ranking based
on this average. 4 out of the first 5 ranks were occupied by variational models, which is
coherent with our manual analysis.

• Using any of the proposed models for dataset augmentation helps in achieving better predic-
tion accuracy with the proposed prediction framework. Even though the accuracy increase is
not spectacular and the the prediction framework is not optimal, it is enough to prove that our
proposed solutions achieve their goal. Concretely, a financial time-series regime prediction
model achieves better results if the training dataset is augmented with synthetically generated
samples.

7.5 Open Challenges
Given the fact that this research field is still at its early stages, we encountered several issues
that have not been specifically approached in the literature, nor have they been mentioned by
researchers in their prospective future works so far. We have compiled a list of the challenges that
remain open up to this point:

• Optimal architecture. There is no consensus in the current state of the art as to what
network architecture works best for generating financial time series. Researchers tried
several models but have failed in finding one type that outperforms all others.

• Cost function. Finding the right cost function to optimize the generation process is another
key aspect that requires further investigation. Since a concrete evaluation metric is missing,
it is difficult to design a proper cost function, not knowing what the end goal of the learning
procedure is. This makes the choice of an optimization function a random process.

• Standardized evaluation. Most papers in this field report their results on different datasets
and under different evaluation setups. Without having a common denominator it is extremely
difficult to assess which algorithm performs better. Moreover, it is still debatable what
evaluation metric should be used in order to assess the goodness of the synthetic data. This
last point is a common problem for generative models, also encountered in other fields, such
as computer vision.

8 CONCLUSIONS
In this paper we proposed a complex framework for generating realistic financial time-series. We
proposed a new way of extracting batches of data from the training set, adapted to the particu-
larity of financial time-series. We investigated 3 major classes of generative models with various
model composition, setups, hyperparameters, training frameworks and data regimes. We examined
different qualitative and quantitative metrics and tested the dataset augmentation ability on real
data, under a complex prediction scenario.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 Dogariu, et al.

Based on our results, we strongly believe it is necessary to perform exhaustive tests on a large
number of network models in order to find the optimal setup. This study involved a large number
of iterations in order to single out the best combinations that can provide a performance boost to
fintech algorithms. Our entire progress was validated at each step by experts from our financial
partner, offering valuable insights when the nature of the processed data cast a shade of ambiguity
on the obtained results.

Our current work suggests that even though good results can be achieved with various generative
models, it is far more probable to find a good setup under the variational autoencoder framework.
This manages to satisfy both qualitative and quantitative constraints, improves accuracy when
used for augmenting the training dataset on the prediction task, converges faster than all other
models and it managed to generate realistic samples to the point of being difficult to tell apart from
real data by financial experts.

Finally, similar to the image generation field, we stress the need of finding a metric or validation
framework that can harness both objective and subjective properties under a single quantifiable
value. This should completely characterise the goodness of the generated samples and serve as
an optimisation criterion. Our future work will focus on this specific part, since it was among the
most difficult obstacles that we encountered during the development stage.

ACKNOWLEDGMENTS
The work of Mihai Dogariu, Liviu-Daniel S, tefan and Bogdan Ionescu was partly funded under
project AI4Media “A European Excellence Centre for Media, Society and Democracy”, grant #951911,
H2020 ICT-48-2020.

REFERENCES
[1] Parnian Afshar, Arash Mohammadi, Konstantinos N Plataniotis, Anastasia Oikonomou, and Habib Benali. 2019. From

handcrafted to deep-learning-based cancer radiomics: challenges and opportunities. IEEE Signal Processing Magazine
36, 4 (2019), 132–160.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In
International conference on machine learning. PMLR, 214–223.

[3] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020. wav2vec 2.0: A Framework for
Self-Supervised Learning of Speech Representations. Advances in Neural Information Processing Systems 33 (2020).

[4] Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay Divakaran. 2018. Zero-shot object detection.
In Proceedings of the European Conference on Computer Vision (ECCV). 384–400.

[5] Tim Bollerslev. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics 31, 3 (1986),
307–327.

[6] Anirban Chakraborti, Ioane Muni Toke, Marco Patriarca, and Frédéric Abergel. 2011. Econophysics review: I. Empirical
facts. Quantitative Finance 11, 7 (2011), 991–1012.

[7] Damien Challet and Matteo Marsili. 2003. Criticality and market efficiency in a simple realistic model of the stock
market. Physical Review E 68, 3 (2003), 036132.

[8] Damien Challet and Y-C Zhang. 1997. Emergence of cooperation and organization in an evolutionary game. Physica
A: Statistical Mechanics and its Applications 246, 3-4 (1997), 407–418.

[9] Jun-Jie Chen, Bo Zheng, and Lei Tan. 2013. Agent-based model with asymmetric trading and herding for complex
financial systems. PloS one 8, 11 (2013), e79531.

[10] Yu-Sheng Chen, Yu-Ching Wang, Man-Hsin Kao, and Yung-Yu Chuang. 2018. Deep photo enhancer: Unpaired learning
for image enhancement from photographs with gans. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 6306–6314.

[11] R. Cont. 2001. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance 1, 2
(2001), 223–236. https://doi.org/10.1080/713665670

[12] Mihai Dogariu, Liviu-Daniel Ştefan, Bogdan-Andrei Boteanu, Claudiu Lamba, and Bogdan Ionescu. 2021. Towards
Realistic Financial Time Series Generationvia Generative Adversarial Learning. In Proceedings of the 29th European
Signal Processing Conference (EUSIPCO).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1080/713665670

Generation of Realistic Synthetic Financial Time-Series 111:23

[13] Haodong Duan, Yue Zhao, Yuanjun Xiong, Wentao Liu, and Dahua Lin. 2020. Omni-Sourced Webly-Supervised
Learning for Video Recognition. In Computer Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm (Eds.). Springer International Publishing, Cham, 670–688.

[14] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. 2015. Training generative neural networks via
maximum mean discrepancy optimization. In Proceedings of the Thirty-First Conference on Uncertainty in Artificial
Intelligence. 258–267.

[15] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue, and AdamRoberts. 2018. GANSynth:
Adversarial Neural Audio Synthesis. In International Conference on Learning Representations.

[16] Robert F Engle. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom
inflation. Econometrica: Journal of the econometric society (1982), 987–1007.

[17] Robert F Engle and Victor K Ng. 1993. Measuring and testing the impact of news on volatility. The journal of finance
48, 5 (1993), 1749–1778.

[18] Patrick Esser, Ekaterina Sutter, and Björn Ommer. 2018. A variational u-net for conditional appearance and shape
generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8857–8866.

[19] Fuli Feng, Huimin Chen, Xiangnan He, Ji Ding, Maosong Sun, and Tat-Seng Chua. 2019. Enhancing Stock Movement
Prediction with Adversarial Training. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization, 5843–5849. https:
//doi.org/10.24963/ijcai.2019/810

[20] Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, and Agus Sudjianto. 2020. Time Series Simulation by Conditional
Generative Adversarial Net. International Journal of Mechanical and Industrial Engineering 14, 6 (2020), 463–476.

[21] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoff, and Frédo Durand. 2017. Deep bilateral learning
for real-time image enhancement. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–12.

[22] Pushpendu Ghosh, Ariel Neufeld, and Jajati Keshari Sahoo. 2020. Forecasting directional movements of stock prices
for intraday trading using LSTM and random forests. arXiv preprint arXiv:2004.10178 (2020).

[23] Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I Shakir, Guotai Wang, Zach Eaton-Rosen, Robert Gray,
Tom Doel, Yipeng Hu, et al. 2018. NiftyNet: a deep-learning platform for medical imaging. Computer methods and
programs in biomedicine 158 (2018), 113–122.

[24] Lawrence R Glosten, Ravi Jagannathan, and David E Runkle. 1993. On the relation between the expected value and the
volatility of the nominal excess return on stocks. The journal of finance 48, 5 (1993), 1779–1801.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.
org.

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672–2680.

[27] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. 2006. A kernel method for the
two-sample-problem. Advances in neural information processing systems 19 (2006), 513–520.

[28] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. 2012. A kernel
two-sample test. The Journal of Machine Learning Research 13, 1 (2012), 723–773.

[29] Yaping Hao and Qiang Gao. 2020. Predicting the trend of stock market index using the hybrid neural network based
on multiple time scale feature learning. Applied Sciences 10, 11 (2020), 3961.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

[31] Ludger Hentschel. 1995. All in the family nesting symmetric and asymmetric garch models. Journal of Financial
Economics 39, 1 (1995), 71–104.

[32] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural information processing
systems. 6626–6637.

[33] M Hiransha, E Ab Gopalakrishnan, Vijay Krishna Menon, and KP Soman. 2018. NSE stock market prediction using
deep-learning models. Procedia computer science 132 (2018), 1351–1362.

[34] Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, and Tie-Yan Liu. 2018. Listening to chaotic whispers: A deep learning
framework for news-oriented stock trend prediction. In Proceedings of the eleventh ACM international conference
on web search and data mining. 261–269.

[35] NoureldienHussein, Efstratios Gavves, and ArnoldW.M. Smeulders. 2019. Timeception for Complex Action Recognition.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-To-Image Translation With Conditional
Adversarial Networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37] Yifan Jiang, XinyuGong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, and ZhangyangWang.
2021. Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.24963/ijcai.2019/810
https://doi.org/10.24963/ijcai.2019/810
http://www.deeplearningbook.org
http://www.deeplearningbook.org

111:24 Dogariu, et al.

(2021), 2340–2349.
[38] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. 2017. Variational deep embedding: an

unsupervised and generative approach to clustering. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence. 1965–1972.

[39] Zura Kakushadze and Willie Yu. 2016. Statistical industry classification. Journal of Risk & Control 3, 1 (2016), 17–65.
[40] M Esat Kalfaoglu, Sinan Kalkan, and A Aydin Alatan. 2020. Late temporal modeling in 3d cnn architectures with bert

for action recognition. In European Conference on Computer Vision. Springer, 731–747.
[41] Leonid V Kantorovich. 1960. Mathematical methods of organizing and planning production. Management science 6, 4

(1960), 366–422.
[42] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architecture for generative adversarial

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4401–4410.
[43] Raehyun Kim, Chan Ho So, Minbyul Jeong, Sanghoon Lee, Jinkyu Kim, and Jaewoo Kang. 2019. Hats: A hierarchical

graph attention network for stock movement prediction. arXiv preprint arXiv:1908.07999 (2019).
[44] Sangyeon Kim and Myungjoo Kang. 2019. Financial series prediction using Attention LSTM. arXiv preprint

arXiv:1902.10877 (2019).
[45] Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. In International Conference on Learning

Representation (ICLR).
[46] Jonathan Kinlay. 2011. CANMACHINE LEARNINGTECHNIQUES BEUSEDTO PREDICTMARKETDIRECTION?-THE

1,000,000 MODEL TEST.
[47] Claudia Klüppelberg, Alexander Lindner, and Ross Maller. 2004. A continuous-time GARCH process driven by a Lévy

process: stationarity and second-order behaviour. Journal of Applied Probability (2004), 601–622.
[48] Adriano Koshiyama, Nick Firoozye, and Philip Treleaven. 2021. Generative adversarial networks for financial trading

strategies fine-tuning and combination. Quantitative Finance 21, 5 (2021), 797–813.
[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing systems. 1097–1105.
[50] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency. The annals of mathematical statistics

22, 1 (1951), 79–86.
[51] Blake LeBaron. 2006. Agent-based computational finance. Handbook of computational economics 2 (2006), 1187–1233.
[52] Dong Li, Xingfa Zhang, Ke Zhu, and Shiqing Ling. 2018. The ZD-GARCHmodel: A new way to study heteroscedasticity.

Journal of Econometrics 202, 1 (2018), 1–17.
[53] Xinyi Li, Yinchuan Li, Hongyang Yang, Liuqing Yang, and Xiao-Yang Liu. 2019. DP-LSTM: Differential privacy-inspired

LSTM for stock prediction using financial news. arXiv preprint arXiv:1912.10806 (2019).
[54] Yujia Li, Kevin Swersky, and Rich Zemel. 2015. Generative moment matching networks. In International Conference

on Machine Learning. PMLR, 1718–1727.
[55] Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE Transactions on Information theory 37,

1 (1991), 145–151.
[56] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. 2014. Microsoft coco: Common objects in context. In European conference on computer vision. Springer,
740–755.

[57] Huicheng Liu. 2018. Leveraging financial news for stock trend prediction with attention-based recurrent neural
network. arXiv preprint arXiv:1811.06173 (2018).

[58] Jialin Liu, Fei Chao, Yu-Chen Lin, and Chih-Min Lin. 2019. Stock Prices Prediction using Deep Learning Models. (2019).
arXiv:1909.12227

[59] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. 2018. Are gans created equal? a
large-scale study. In Advances in neural information processing systems. 700–709.

[60] Thomas Lux and Michele Marchesi. 1999. Scaling and criticality in a stochastic multi-agent model of a financial market.
Nature 397, 6719 (1999), 498–500.

[61] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to information retrieval.
Cambridge university press.

[62] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American statistical
Association 46, 253 (1951), 68–78.

[63] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. 2017. Adversarial variational bayes: Unifying variational
autoencoders and generative adversarial networks. In International Conference on Machine Learning. PMLR, 2391–
2400.

[64] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral Normalization for Generative
Adversarial Networks. In International Conference on Learning Representations.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://arxiv.org/abs/1909.12227

Generation of Realistic Synthetic Financial Time-Series 111:25

[65] Daniel B Nelson and Charles Q Cao. 1992. Inequality constraints in the univariate GARCH model. Journal of Business
& Economic Statistics 10, 2 (1992), 229–235.

[66] Philipp Otto, Wolfgang Schmid, and Robert Garthoff. 2018. Generalised spatial and spatiotemporal autoregressive
conditional heteroscedasticity. Spatial Statistics 26 (2018), 125–145.

[67] Manuel Pariente, Samuele Cornell, Antoine Deleforge, and Emmanuel Vincent. 2020. Filterbank design for end-to-end
speech separation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 6364–6368.

[68] Daniel S Park, Yu Zhang, Ye Jia, Wei Han, Chung-Cheng Chiu, Bo Li, Yonghui Wu, and Quoc V Le. 2020. Improved
Noisy Student Training for Automatic Speech Recognition. Proc. Interspeech 2020 (2020), 2817–2821.

[69] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019), 8026–8037.

[70] Obioma Pelka, Christoph Friedrich, Alba García Seco de Herrera, and Henning Müller. 2020. Overview of
the ImageCLEFmed 2020 Concept Prediction Task: Medical Image Understanding. In CLEF2020 working notes
(CEUR Workshop Proceedings, Vol. 2696).

[71] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. In 4th International Conference on Learning Representations, ICLR, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1511.06434

[72] Andrea Picasso Ratto, Simone Merello, Luca Oneto, Yukun Ma, Lorenzo Malandri, and Erik Cambria. 2018. Ensemble of
technical analysis and machine learning for market trend prediction. In 2018 IEEE symposium series on computational
intelligence (ssci). IEEE, 2090–2096.

[73] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning. PMLR, 1278–1286.

[74] Tim Salimans, Ian Goodfellow,Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016. Improved techniques
for training GANs. In Proceedings of the 30th International Conference on Neural Information Processing Systems.
2234–2242.

[75] Enrique Sentana. 1995. Quadratic ARCH models. The Review of Economic Studies 62, 4 (1995), 639–661.
[76] Lior Sidi. 2020. Improving S&P stock prediction with time series stock similarity. arXiv preprint arXiv:2002.05784

(2020).
[77] David Snyder, Daniel Garcia-Romero, Gregory Sell, Alan McCree, Daniel Povey, and Sanjeev Khudanpur. 2019. Speaker

recognition for multi-speaker conversations using x-vectors. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 5796–5800.

[78] Shuntaro Takahashi, Yu Chen, and Kumiko Tanaka-Ishii. 2019. Modeling financial time-series with generative
adversarial networks. Physica A: Statistical Mechanics and its Applications 527 (2019), 121261.

[79] L Theis, A van den Oord, and M Bethge. 2016. A note on the evaluation of generative models. In International
Conference on Learning Representations (ICLR 2016). 1–10.

[80] Arun Upadhyay, Gautam Bandyopadhyay, and Avijan Dutta. 2012. Forecasting stock performance in indian market
using multinomial logistic regression. Journal of Business Studies Quarterly 3, 3 (2012), 16.

[81] Michael P Wellman and Elaine Wah. 2017. Strategic agent-based modeling of financial markets. RSF: The Russell Sage
Foundation Journal of the Social Sciences 3, 1 (2017), 104–119.

[82] Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. 2020. Quant gans: Deep generation of financial
time series. Quantitative Finance 20, 9 (2020), 1419–1440.

[83] Yumo Xu and Shay B Cohen. 2018. Stock movement prediction from tweets and historical prices. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 1970–1979.

[84] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. 2019. Time-series Generative Adversarial Networks. In
Advances in Neural Information Processing Systems. 5509–5519.

[85] Jean-Michel Zakoian. 1994. Threshold heteroskedastic models. Journal of Economic Dynamics and control 18, 5 (1994),
931–955.

[86] Kang Zhang, Guoqiang Zhong, Junyu Dong, Shengke Wang, and Yong Wang. 2019. Stock market prediction based on
generative adversarial network. Procedia computer science 147 (2019), 400–406.

[87] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin. 2017. Adversarial feature
matching for text generation. In Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 4006–4015.

[88] Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V Le, and Yonghui Wu. 2020.
Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition. In Neural Information Processing
Systems Workshop on Self-Supervised Learning for Speech and Audio Processing Workshop.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

http://arxiv.org/abs/1511.06434

111:26 Dogariu, et al.

[89] Xingyu Zhou, Zhisong Pan, Guyu Hu, Siqi Tang, and Cheng Zhao. 2018. Stock market prediction on high-frequency
data using generative adversarial nets. Mathematical Problems in Engineering 2018 (2018).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:27

A QUALITATIVE METRICS ASSESSMENT
For the qualitative metrics evaluation of the synthetically generated samples we resorted to manual
assessment of the goodness of the synthesized samples. The procedure was as follows: we saved
a snapshot of all the employed metrics at the end of each training epoch for any given model.
We then manually went through the logged data and decided whether the qualitative metrics are
similar to the ones presented by the real data or not. This has been done by visual inspection of the
similarity between the plotted information for both types of data (real and synthetic). We show
below several plots for the different metrics that we evaluated. For the sake of completeness we
display the metrics for the real samples, and two examples for the synthetic samples: one where
the generating model behaves well and one where it fails. All metrics are computed on the log
return values.

A.1 Central moments statistics
Synthetic financial time-series should have the first 4 central moments values similarly spread
to real samples. We searched for the models that had the 4 central moments in the same value
range, but also similarly spread on the graph. This information could not be captured numerically,
therefore we resorted to manual assessment. Figure 5 captures such an example.

A.2 Autocorrelation
Figure 6 displays an example of box plot of the autocorrelation function for different time lags.
These box plots were obtained over an entire batch for both real and syntehtic samples. Financial
time-series should have diminishing values of the autocorrelation starting with lags greater than 1
and the spread should be similar for real and synthetic cases.

A.3 Heavy tail distribution
We plot in Figure 8 the probability distribution function overlap of real and synthetically generated
samples. We extract this information from randomly chosen batches of the corresponding data at
the end of each epoch. When the two distributions do not overlap, it is a clear indicator that the
model does not behave well.

A.4 Cluster volatility
The plots for assessing whether the cluster volatility characteristic is met or not are similar to the
ones for the autocorrelation. The reason behind this is that cluster volatility is evaluated based
on the autocorrelation of the absolute or squared values. In their case, the plot should display no
significant autocorrelation.

A.5 Cumulative sum
The cumulative sum is plotted under the form of a line plot in Figure 7. Real samples display distinct
forms of these lines for each company. Inflexion points usually occur at different times for different
companies and only companies that have direct links (either they are owned by the same mother
company or have very similar activity) can behave similarly but, even then, only for short periods
of time (5-10 consecutive samples).

A.6 Trend ratio
These are also displayed under the form of line plots and behave similarly to the cumulative sum.
The same explanation that applies for the cumulative sum graph is valid here as well.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:28 Dogariu, et al.

(a) Synthetic samples were obtained with a good generation model.

(b) Synthetic samples were obtained with a bad generation model.

Fig. 5. Real (red) vs synthetic (blue) samples central moments distribution.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Generation of Realistic Synthetic Financial Time-Series 111:29

(a) Autocorrelation plot obtained on a batch of real samples.

(b) Autocorrelation plot obtained on a batch of synthetic samples generated by a good model.

(c) Autocorrelation plot obtained on a batch of synthetic samples generated by a bad model.

Fig. 6. Autocorrelation box plots computed on an entire batch of samples, for different lags.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:30 Dogariu, et al.

(a) Cumulative sum plot ob-
tained on a batch of real samples.

(b) Cumulative sum plot ob-
tained on a batch of synthetic
samples generated by a good
model.

(c) Cumulative sum plot obtained
on a batch of synthetic samples
generated by a bad model.

Fig. 7. Cumulative sum plots computed on an entire batch of samples.

(a) Probability density functions of real sam-
ples and synthetic samples generated by a good
model.

(b) Probability density functions of real samples
and synthetic samples generated by a bad model.

Fig. 8. Probability density function plots computed on an entire batch of samples.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Works
	3 Financial Time-Series
	4 Generative Models
	4.1 Generative Adversarial Networks
	4.2 Variational Autoencoders
	4.3 Generative Moment Matching Networks

	5 Data
	5.1 Dataset Creation
	5.2 Dataset Preparation
	5.3 Regime Splits
	5.4 Synthetic Time Series Formation

	6 Evaluation Procedure
	6.1 Qualitative analysis
	6.2 Quantitative analysis
	6.3 Predictive accuracy test

	7 Results and Discussion
	7.1 Training Results
	7.2 Metric Results
	7.3 Prediction Results
	7.4 Takeaway Findings
	7.5 Open Challenges

	8 Conclusions
	Acknowledgments
	References
	A Qualitative Metrics Assessment
	A.1 Central moments statistics
	A.2 Autocorrelation
	A.3 Heavy tail distribution
	A.4 Cluster volatility
	A.5 Cumulative sum
	A.6 Trend ratio

